

PDHonline Course C395 (3 PDH)

Green Remediation

Instructor: Jeffrey R. Sotek, PE, CSP, CIH

2020

PDH Online | PDH Center

5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone: 703-988-0088 www.PDHonline.com

An Approved Continuing Education Provider

2008 OSC Readiness Training:

Opportunities for Green Remediation

Carlos Pachon & Myles Bartos San Diego February, 2008

Readiness Training Pros

What is "Green Remediation"?

Working/draft definition of the term:

Green Remediation - The practice of considering the environmental effects of a remediation strategy (i.e., the remedy selected and the implementation approach) early in the process, and incorporating options to maximize the net environmental benefit of the cleanup action.

Finding Sustainable Approaches Throughout the Site Cleanup & Revitalization Process

Green Approaches; Deconstruction, Demolition, and Clearing

- Reuse/recycle deconstruction and demolition materials
- Reuse materials on site whenever possible
- Consider future site use and reuse existing infrastructure
- Use clean diesel and low sulfur fuels in equipment and noise controls for power generation
- Retain native vegetation and soils, wherever possible

Green Remediation Approaches; Deconstruction, Demolition, and Clearing

• Ex: Reuse/recycle deconstruction and demolition materials

Green Approaches; Site Cleanup Waste Management

- Power machinery and equipment using cleaner fuels
- Use renewable energy sources, such as solar, wind, and methane to power remediation activities
- Improve energy efficiency of chosen remediation strategies
- Consider remediation approaches that reduce resource use
- Minimize impact on air, water, adjacent lands, and public health
- Incorporate remediation activities that sequester carbon, where applicable

Green Approaches in Site Cleanup, Remediation, & Waste Management

 Ex: Power remedies with renewable energy, use clean diesel yellow equipment...

Green Approaches; Design and Construction for Reuse

- Use Energy Star, LEED, and GreenScapes principles in both new and existing buildings
- Reduce environmental impact by reusing existing structures and recycling industrial materials
- Use natural systems to manage stormwater, like green roofs, landscaped swales, and wetlands
- Incorporate Smart Growth principles that promote more balanced land uses, walkable neighborhoods, and greater access to public transportation

Create ecological enhancements to promote biodiversity and provide wildlife habitat 8

Green Approaches; Design and Construction for Reuse

• Ex: Manage stormwater thru better site design, foster ecorestoration...

Green Approaches; Sustainable Use & Long Term Stewardship

- Reduce use of toxic materials in manufacturing, maintenance, and use of buildings and land
- Minimize waste generation, manage waste properly, and recycle materials used/generated
- Monitor engineering and institutional controls on site
- Reduce water use by incorporating water efficient systems and use native vegetation to limit irrigation
- Promote energy efficiency and use of renewable energy
- Take appropriate steps to prevent (re)contamination

EPA's Green Remediation Strategy

Goal: Foster the adoption of greener remediation practices across cleanup programs

Strategy

- Benchmarking: State of the practice.
- Identifying opportunities: Where can we improve?
- Capacity building and networking practitioners
- Creating "enabling" mechanisms

Superfund Energy & Carbon Footprint Flash Analysis Findings¹

Remedy	Estimated energy use per year (Kwh*10 ⁶)	Total energy use per year (Kwh*10 ⁶)	Total carbon emissions per year ² (Tons)	Total carbon emissions thru 2030 (Tons)
Pump &Treat	402	7,669	275,592	5,253,256
Soil Vapor Extraction	16	121	8,264	82,840
Multi-Phase Extraction	32	383	16,334	262,519
Air Sparging	23	205	15,454	140,561
Thermal Desorption	48	1,944	11,018	1,331,790
Total		10,322	326,662	7,070,966

1.

2.

Based on "average" projects with data from cost& performance case studies at <u>www.frtr.gov</u> among other sources.

Based on 1.37lbs of CO2 emitted per Kw/h generated ..

12

Opportunities for Reducing Energy and Carbon Footprints

- Maximizing energy efficiency in site remediation projects
 - Optimization of existing treatment systems
 - Design evaluation
 - Upgraded equipment
- Securing alternative sources of energy
 - Solar, wind, landfill gas, biomass, geothermal, tidal/wave, cogeneration
 - Biofuels, as technology and availability evolve
- Benchmarking CO2 emissions
 - Opportunities for carbon credits?
 - Opportunities for carbon offsets?

Benefits of Green Remediation Strategies

- Reduced impact on local environment, including air, water, and soil
- Increased energy efficiency resulting in lower carbon emissions
- Acceleration of ecosystem and biodiversity restoration
- Reduced long-term maintenance costs
- Immediate savings in utility costs

Green Remediation Case Study: Former Nebraska Ordnance Plant

Background: 17,000-acre Superfund site in Mead, NE, that operated from 1942 to 1956 as a munitions production plant. High concentrations of TCE in groundwater.

Greener Remedy: Integration of alternate source of energy

- Use of 10-kilowatt (kW) wind turbine to power a groundwater circulation well for treating contaminated groundwater
- Monthly emissions of carbon dioxide averaged between 24 to 32% less during the grid inter-tie phase
- Average daily energy consumption from utilities decreased by 26% during the grid inter-tie phase
- Eliminated need for utility extension to remote area

Green Remediation Case Study: Rhizome Collective Inc. Brownfields Site

http://rhizomecollective.org/node/8

Background: Brownfield in Austin, TX, with 5,000 cubic yards of illegally dumped debris. Greener Remedy:

- Green Building and Construction and Demolition (C&D) Practices: Concrete was consolidated and used as fill for building infrastructure of new park
- Energy Considerations: Vegetable-oil fuel powered tractor removing debris
- Ecological and Natural Remediation Technologies: Bioremediation and phytoremediation broke down landfill contaminants; Constructed wetlands were installed for waste water treatment and storm water mitigation

Green Remediation – Coming Soon from EPA

- Green Remediation website February 2008
 http://duin.org/groopromodiation
 - http://cluin.org/greenremediation
- USACE-USEPA MOA GR language February 2007
- Internet Seminar April 2007
- Green Remediation Primer April 2008
- RPM/OSC Toolkit for Green Remediation June 2008
- Engineering Considerations for Reuse Planning June 2008
- NARPm Green Remediation training for EPA RPMs July 2008

Upcoming BTSC Products

Green Remediation Primer

- Compile information on practices, experiences, and new opportunities
- Encourage discussion early in remedy and redevelopment planning phases
- Promote use of renewable energy and optimization of remediation systems
- Remedy Engineering Considerations for Reuse Planning Bulletin
 - Leveraging site assessment data collection to support redevelopment engineering data needs
 - Joint remedy engineering design and site reuse design and decisions to increase reuse flexibility, reuse structures, and avoid "re-opening" transition remedies

- Long term sustainability of remedies & reuse

Brownfields and Land Revitalization Technology Support Center

www.brownfieldstsc.org

Carlos Pachon pachon.carlos@epa.gov (703) 603-9904 http//cluin.org

